Stick–slip oscillations: Dynamics of friction and surface roughness

نویسندگان

  • M. T. Bengisu
  • Adnan Akay
چکیده

While its classical model is relatively simple, friction actually depends on both the interface properties of interacting surfaces and on the dynamics of the system containing them. At a microscopic level, the true contact area changes as the surfaces move relative to each other. Thus at a macroscopic level, total friction and normal forces are time-dependent phenomena. This paper introduces a more detailed friction model, one that explicitly considers deformation of and adhesion between surface asperities. Using probabilistic surface models for two nominally flat surfaces, the stick–slip model sums adhesive and deformative forces over all asperities. Two features distinguish this approach from more traditional analyses: ~i! Roughness distributions of the two interacting surfaces are considered to be independent, ~ii! Intersurface contacts occur at both asperity peaks, as in previous models, and on their slopes. Slope contacts, in particular, are important because these oblique interactions produce motion normal to the plane of sliding. Building the model begins by analyzing local friction forces as composites of resistance to elastic deformation and shear resistance arising from adhesion between asperity surfaces. By extending the expressions obtained for normal and tangential friction forces over the macroscopic surfaces, the model then describes the stick–slip behavior frequently observed in dynamic systems and permits simulating a rigid body on a moving platform. Numerical results for several surface and system parameters illustrate both time-dependent and time-averaged frictional forces. These analyses also show that, although total averaged friction remains constant with respect to sliding velocity for the cases considered, the relatively small deformation component exhibits resonancelike behavior at certain speeds. Stick–slip occurs only within a narrow range around these critical speeds of a system. External damping can prevent stick–slip motion, and both deformative and adhesive frictional forces must be present for it to occur at all. © 1999 Acoustical Society of America. @S0001-4966~99!03701-7#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stick-slip friction and wear of articular joints.

Stick-slip friction was observed in articular cartilage under certain loading and sliding conditions and systematically studied. Using the Surface Forces Apparatus, we show that stick-slip friction can induce permanent morphological changes (a change in the roughness indicative of wear/damage) in cartilage surfaces, even under mild loading and sliding conditions. The different load and speed re...

متن کامل

Stick-slip control in nanoscale boundary lubrication by surface wettability.

We study the effect of atomic-scale surface-lubricant interactions on nanoscale boundary-lubricated friction by considering two example surfaces-hydrophilic mica and hydrophobic graphene-confining thin layers of water in molecular dynamics simulations. We observe stick-slip dynamics for thin water films confined by mica sheets, involving periodic breaking-reforming transitions of atomic-scale c...

متن کامل

Study Effect of Deformation Nanochannel Wall Roughness on The Water-Copper Nano-Fluids Poiseuille Flow Behavior

In the nanochannel flow behavior with respect to expand their applications in modern systems is of utmost importance. According to the results obtained in this study, the condition of nonslip on the wall of the nanochannel is not acceptable because in the nano dimensions, slip depends on different parameters including surface roughness. In this study, keeping the side area roughness, deformatio...

متن کامل

Stick-slip friction of gecko-mimetic flaps on smooth and rough surfaces.

The discovery and understanding of gecko 'frictional-adhesion' adhering and climbing mechanism has allowed researchers to mimic and create gecko-inspired adhesives. A few experimental and theoretical approaches have been taken to understand the effect of surface roughness on synthetic adhesive performance, and the implications of stick-slip friction during shearing. This work extends previous s...

متن کامل

Sustained frictional instabilities on nanodomed surfaces: stick-slip amplitude coefficient.

Understanding the frictional properties of nanostructured surfaces is important because of their increasing application in modern miniaturized devices. In this work, lateral force microscopy was used to study the frictional properties between an AFM nanotip and surfaces bearing well-defined nanodomes comprising densely packed prolate spheroids, of diameters ranging from tens to hundreds of nano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998